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数 物 系 科 目 

 

1. 数物系科目の問題は［１］から［７］まで７問ある。そのうち 

４問を選んで解答すること。  

2. 答案は，問題ごとに別々の解答用紙に記入し，各解答用紙の上端

に，問題番号（１ヵ所）と受験番号（１ヵ所）を記入すること。 

3. 答案が白紙の場合でも，必ず解答用紙に問題番号と受験番号を記

入して提出すること。 

4. 答案には，計算の過程などの解答に至る根拠を記すこと．問題文

に特に指示がある場合には，それに従うこと。解答用紙の裏面に

も答案を記入してよい。 

5. 問題紙，解答用紙，草案用紙は持ち帰らないこと。 

 



 

［ １ ］ 質点が運動する	"#	平面内に原点	O	を中心とする２次元極座標 (&, () をとり，&	およ

び	(	が増える向きの単位ベクトルをそれぞれ	*!,	*"とする。いま，中心力ポテンシャル	+(&) = − #
!

（	.	は正の定数）のもとでの質量	/	の質点の運動を考える。次の問いに答えよ。 

 

(1) 質点に働く力は	0 = 1(&)*! 	と表される。1(&)	を求めよ。 

 

(2) 質点の位置ベクトルは	2 = 	&*! 	と表される。質点の速度ベクトル	2̇	と加速度ベクトル	2̈	が以

下のように表されることを示せ。 

 

 	2̇ = &̇*! + &(̇*" 
2̈ = 6&̈ − &(̇$7*! + 62&̇(̇ + &(̈7*" 

 

(3) 質点の角運動量	9 = 2 × /2̇	の大きさ	;	が	; = 	/&$(̇と表されることを示し，それが時間に

よらず一定であることを示せ。 

 

(4) 質点の全エネルギー < = %
$/|2̇|$ + +(!) は，有効ポテンシャル（等価１次元ポテンシャル） 

+e(!) を用いて < = %
$/&̇$ + +e(!) と表される。これにより，質点の	&	方向の運動は，ポテ

ンシャル +e(!)	のもとでの１次元問題として記述できる。質点の角運動量の大きさを	;	とし

て，次の問いに答えよ。 

 

(i) 有効ポテンシャルが +&(&) = '!
$(!! + +(&) と表されることを示せ。 

 

(ii) 有効ポテンシャル	+&(&)	の概形を，横軸	&, 縦軸	+&(&)	として描け。 

 

(iii) 質点が原点	O	のまわりで円運動するときの半径	&(と全エネルギー	<	を求めよ。 

  

(iv) 円運動する質点に	&	方向の摂動を与えたとき，質点の	&方向の運動が調和振動とな

ることを，+&(&)	を	& = &(のまわりで２次まで展開して示せ。また，この調和振動

の周期を求めよ。 

 

 

 

 

［ １ ］は次ページに続く 



 

(5) 図１のように，無限遠から	"	軸に平行な直線に沿って進入した質点が，中心力によって軌道

を変えられて，角度	>	の方向に飛び去っていった。質点の全エネルギーを	<，有効ポテンシ

ャルを +&(&)，角運動量の大きさを	;，原点	O	に最も近づいたときの距離を	&)	(&) > 0)	とし

て，角度	>	は以下の式で表されることを示せ。 

 

> = 2 ;
√2/B C&

&$D< − +&(&)
+

!"
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[ ２ ] 理想気体に関する次の問いに答えよ。理想気体の圧力を  𝑝，体積を  𝑉，温度

を  𝑇， エントロピーを  𝑆 とする。気体定数を  𝑅，定積モル比熱を  𝐶𝑉，定圧モル比熱を

 𝐶𝑝，比熱比(𝐶𝑝 𝐶𝑉⁄ ) を  𝛾 とする。 𝐶𝑉， 𝐶𝑝 は一定である。必要な変数は定義して使用し

てよい。 

 

(1) 1 モルの理想気体の体積を  𝑉1 から  𝑉2 に等温膨張させる  (𝑉2 > 𝑉1)。以下の問いに

答えよ。  

 

(i) 準静的な等温膨張のとき，理想気体が外界になす仕事と，外から理想気体に

加えられる熱を求めよ。ただし，仕事は，理想気体が外界からなされる場合

を正とする。 

 

(ii) 準静的という条件のない等温膨張のとき，理想気体が外界になす仕事の大

きさは，問(i)で求めた仕事に比べてどのように変化すると考えられるか。50

字程度で答えよ。 

 

(2) 𝑛モルの理想気体のエントロピー 𝑆 = 𝑆(𝑇, 𝑉, 𝑛) が①式のように書けることを示

せ。𝑆0 は，𝑇，𝑉，𝑛 に依存しない定数とする。必要であれば，図 1 に示す温度

 𝑇0，体積  𝑉0 の状態から温度  𝑇，体積  𝑉 の状態に至る過程を利用せよ。 

 

                                 ① 

 

 

 

 

 

 

 

 

 

 

 

図 1 

 

［ ２ ］は次ページに続く 

𝑆(𝑇, 𝑉, 𝑛) = 𝑛𝐶𝑉 ln 𝑇 + 𝑛𝑅 ln (
𝑉

𝑛
) + 𝑛𝑆0 



(3) 1 モルの理想気体を作業気体として，以下の準静的な過程 A～D のサイクルか

らなる熱機関 X を考える。 

 

過程 A：状態 1(体積  𝑉1，圧力𝑝1)から状態 2(体積  𝑉2，圧力𝑝2)への断熱圧縮 

過程 B：状態 2 から状態 3(体積  𝑉3 = 𝑉2，圧力𝑝3)への定積（吸熱）変化 

過程 C：状態 3 から状態 4(体積  𝑉4 = 𝑉1，圧力𝑝4)への断熱膨張 

過程 D：状態 4 から状態 1 への定積（放熱）変化 

 

圧力の大小関係は   𝑝3 > 𝑝4 > 𝑝2 > 𝑝1 とする。各状態の温度  𝑇 とエントロピー

 𝑆 については，状態 1 のとき  𝑇1 ，𝑆1 , 状態 2 のとき  𝑇2 ，𝑆2 ，状態 3 のとき

 𝑇3 ，𝑆3 , 状態 4 のとき  𝑇4 ，𝑆4 とする。以下の問いに答えよ。 

 

(i) 準静的な断熱変化では 𝑝𝑉𝛾  が一定となることを示せ。 

 

(ii) 過程 B における温度変化について，𝑇 を  𝑆 の関数として書き表せ。 

 

(iii) 状態 1～4 の  𝑉，𝑇，𝑆 それぞれの大小関係を示せ。 

 

(iv) 過程 A～D のサイクルの，横軸を  𝑉 ，縦軸を  𝑝 とする  𝑝- 𝑉 図と，横軸を

 𝑆 ，縦軸を  𝑇 とする  𝑇- 𝑆 図を描け。なお，それぞれの図に描かれた線が，

どの過程に対応するかを明記すること。 

 

(v) 熱機関 X の効率  𝜂 が②式となることを示せ。 

 

                                         ② 

 

(vi) 過程 B を準静的な等温膨張に，過程 D を準静的な等温圧縮に，それぞれ置

き換えた熱機関 Y を考える。熱機関 Y の温度の最大値と最小値が，熱機

関 X の最大値と最小値とそれぞれ同じであるとき，熱機関 Y の効率は，

熱機関 X の効率よりも大きくなることを示せ。 

𝜂 = 1 − (
𝑉2

𝑉1
)

𝛾−1

 



 

［ ３ ］ 一般に，粘性率が一定の非圧縮流体の運動方程式は，次の①式で表される。 

 

𝜕𝐯

𝜕𝑡
+ (𝐯 ∙ ∇)𝐯 = −

1

𝜌
∇𝑝 + 𝐊 + 𝜈∇ଶ𝐯            ① 

 

ここで，𝐯 は流速ベクトル，𝑡 は時間，𝜌 は密度，𝑝 は圧力，𝐊 は外力，𝜈 は動粘性率である。今，

図1のように，均質で非圧縮，かつ粘性率が一定の液体が入った容器と，その下部に水平に接続さ

れた内半径 𝑎，長さ 𝑙 の細い円管があり，容器内の液体が管を通って静かに流出しているときの，

管内の流れについて考える。流れは管と平行かつ層流で，場には大気圧と重力（ともに一定）以外

の外力は働いていないとする。また，流れは容器内の圧力には影響しないとする。管の中心軸に沿

って右向きに 𝑥 軸をとり，その方向の流速を 𝑢 で表す。大気圧を 𝑝௔，重力加速度を g，管から液

面までの高さを ℎ で表すとき（ただし，ℎ ≫ 𝑎とする），以下の問いに答えよ。 

 

 

 

図1 

 

 

(1) 容器と管の接続口における 𝑝 を求めよ。 

 

(2) この液体の流れを支配する方程式が，①式のほかに，もうひとつある。その式を，その名称

とともに書け。 

 

 

 

 

［ ３ ］は次ページに続く 



 

(3) 液体の流出に伴う ℎ の変化は無視できるとし，場は定常であると見なす。さらに，管の内部

では重力の作用を無視できるとする。以下の問いに答えよ。 

 

(i) 𝑢 が 𝑥 に依らないことを示せ。 

 

(ii) 𝑝 が 𝑥 軸と直交する方向には変化せず，𝑥 方向には直線的に変化することを示せ。 

 

(iii) 管の内壁で 𝑢 = 0 であるとき，流れは 𝑥 軸に関して軸対称で，その運動方程式は

円筒座標系を用いて次の②式のように書き直せる。 

1

𝑟

𝑑

𝑑𝑟
൬𝑟

𝑑𝑢

𝑑𝑟
൰ = −

𝛽

𝜈
            ② 

ただし，𝑟 は 𝑥 軸から直角外向きにとった距離であり，𝛽 = −
ଵ

ఘ

డ௣

డ௫
 である。 

𝛽 を求め，与えられた条件の下で②式を解き，𝑢 の分布を表す式を求めよ。 

 

(iv) 単位時間に管から流れ出る液体の体積を求めよ。 

 

(v) 管内の流れが層流であるための条件が，レイノルズ数 Re を用いて 

Re ≡
𝑈𝐿

𝜈
< 1000   ③ 

で与えられるとする。ここで 𝑈 は代表的な流速の大きさ，𝐿 は代表的な長さである。

𝑈 を管内の平均流速，𝐿 を 𝑎 で各々代表し，g = 10 m/sଶ，ℎ = 0.4 m，𝑙 = 0.5 m， 

𝜈 = 1 × 10ି଺ mଶ/s とするとき，③式が成り立つための 𝑎 の値の範囲を求めよ。 



［ ４ ］ 図 1 のように，厚さが 2! で無限に広い一様で平らな板を，"# 平面と平行にし

て $ = [−!, !] に置く。板の上下の空間は真空である。真空の誘電率を &0，透磁率を '0 とす

る。次の問いに答えよ。 

 

 

 

図 1 

 

 

(1) 板内の誘電率は &0 で，板内に電荷が密度 ( で一様に分布している状況を考える。このと

き，$ > ! における静電場をガウスの法則を用いて求めよ。 

 

(2) 板内の透磁率は '0 で，静磁場を印加した状況を考える。静磁場は $ < −!，$ > ! のそ

れぞれの領域内で一様である。磁力線が $ 軸となす角度は，$ < −! で )0，$ > ! で )1 
とする。$ < −! における磁束密度の $ 成分を *0# とする。次の問いに答えよ。 

(i) $ > ! における磁束密度の $ 成分 *1# を，*0# を用いて表せ。 

(ii) 板内に電流密度 + の定常で一様な伝導電流が # 方向に流れている。)0 = 0 のとき，)1 をアンペールの法則を用いて求めよ。 

 

 

 

 

 

 

 

 

［ ４ ］は次ページに続く 



(3) 静電場と静磁場はいずれも存在せず，板内の電荷密度は 0 (( = 0) の状況を考える。以下

の電磁波を，板の下側 ($ < −!) から板に向けて入射した。 

 

  , = (.$, .%, .#) = (.0 exp(1(20$ − 34)) , 0, 0), 
  6 = (*$, *%, *#) = (0, *0 exp(1(20$ − 34)) , 0) 

 

ここで，.0，*0 はそれぞれ電磁波の電場成分の振幅，磁場成分の振幅，1 は虚数単位，20 は角波数，3 は角振動数，4 は時間である。板内でオームの法則 (+ = 7,) が成り立つ

とする。+ は伝導電流密度，7 は板内の電気伝導度である。板内の誘電率は &，透磁率は '0 とする。次の問いに答えよ。 

(i) ファラデーの法則を用いて，      となることを示せ。 

(ii) 板内で , が満たす方程式                             を導出せよ。その際に，∇ × (∇ × ,) = ∇(∇ ⋅ ,) − ∇2, の関係を用いてよい。 

(iii) 7 ; &3 のとき，板内で電磁波の振幅が   に減衰する距離 < を求めよ。ここで， e は自然対数の底（ネイピア数）で，< = 2! である。必要であれば，             

の関係を用いてよい。 

(iv) 7 = ∞ のとき，板の底面における電磁波の反射率はどうなるか。40 字程度で説明せ

よ。 

  

 
図 1 

 

 !0 = "0# $0 

 %0 = "0# &" × (0 

 (∇2 − 1,2 -2-.2 − /00 --.) ( = 2 

 

 

 ! + "#$  

 %0 = &0$ '0 

 (∇2 − !+0 ,2,-2 − #+0 ,,-) / = 0 

 1e 

 √" = ± 1 + "√2  

 √" = ± 1√2 (1 + ") 
 2 = 3# 4e5e2$6e '0 exp (" (&08 − $- + 92)) 

 ;# = 4e5e2$6e '0 exp (" (&08 − $- + 92)) 

 4e > !$26e5e2  

 exp (" 92) = " 
 

 

 

 ! + "#$  

 %0 = &0$ '0 

 (∇2 − !+0 ,2,-2 − #+0 ,,-) / = 0 

 1e 

 √" = ± 1 + "√2  

 √" = ± 1√2 (1 + ") 
 2 = 3# 4e5e2$6e '0 exp (" (&08 − $- + 92)) 

 ;# = 4e5e2$6e '0 exp (" (&08 − $- + 92)) 

 4e > !$26e5e2  

 exp (" 92) = " 
 

 

 

 ! + "#$  

 %0 = &0$ '0 

 (∇2 − !+0 ,2,-2 − #+0 ,,-) / = 0 

 1e 

 √" = ±1 + "√2  

 √" = ± 1√2 (1 + ") 
 2 = 3# 4e5e2$6e '0 exp (" (&08 − $- + 92)) 

 ;# = 4e5e2$6e '0 exp (" (&08 − $- + 92)) 

 4e > !$26e5e2  

 exp (" 92) = " 
 



 

［ ５ ］ 𝑥	軸上で一次元調和振動する粒子 (質量 𝑚, 正電荷 𝑒	) を考える。次の問いに答えよ。 

 

(1) 粒子に，原点からの変位 𝑥 に比例する復元力 −𝑚𝜔!𝑥 のみが働く場合を考える。ただし， 

𝜔	は振動の角周波数である。粒子の平衡点を位置の原点とする。このとき，粒子の運動を記

述する，時間に依存しないシュレーディンガー方程式は，次の①式で与えられる。 

ℋ𝜑(𝑥) = 	𝐸𝜑(𝑥)	             			① 

ここで，ハミルトニアン	ℋ	は 

ℋ = −
ℏ!

2𝑚
𝜕!

𝜕𝑥!
+ 𝑉(𝑥)	          					② 

で与えられ，𝜑(𝑥) は粒子の波動関数，𝑉(𝑥) はポテンシャルエネルギー，𝐸 はエネルギ

ー固有値，ℏ = ℎ 2𝜋⁄ ，ℎ はプランク定数である。次の問いに答えよ。 

 

(i) 𝑥，𝐸，𝜑(𝑥)	を 𝜉 = !!"ℏ 𝑥，𝜀 = 
$%
ℏ"

，𝜙(𝜉) = 𝜑(𝑥)で置き換えることで①式を無

次元化し，③式が得られることを示せ。 

𝜕!𝜙(𝜉)
𝜕𝜉!

+ (𝜀 − 𝜉!)𝜙(𝜉) = 0																		   									③ 

(ii) ③式の解は，④式のように求まる。 

𝜙(𝜉) = 9:𝑎"𝜉"<exp@−
𝜉!

2
A

#

"$%

					   																		④ 

ただし，𝑘	は	0	以上の整数であり， 

𝑎"&! = −
𝜀 − 1 − 2𝑘

(𝑘 + 2)(𝑘 + 1)
𝑎"     																		⑤ 

である。③式のシュレーディンガー方程式の 𝑛 番目のエネルギー固有値 𝐸' を求

めよ。 

(iii) 最低エネルギーである基底状態 (𝑛 = 0) のエネルギー固有値 𝐸% が 0 にならない

理由を，古典力学との違いに着目して 100 字程度で述べよ。 

(iv) 基底状態 (𝑛 = 0) の波動関数 𝜑%(𝑥) を④，⑤式から求めよ。 

(v) 問 (1) (iv)で求めた波動関数とポテンシャルエネルギー 𝑉(𝑥)	の概形を図示せよ。 

 

 

［ ５ ］は次ページに続く 

  



 

 

(2) 粒子に，問 (1) の復元力に加えて，定常な外部電場の印加により復元力 −𝑒𝐴𝑥	が新たに

作用する場合を考える。ただし，𝐴 は正の定数とする。原点は，問 (1) と共通とする。次

の問いに答えよ。 

 

(i) 粒子の運動を記述するハミルトニアン ℋ	を求めよ。 

(ii) 基底状態 (𝑛 = 0) の波動関数 𝜑%(𝑥) を式で求めよ。 

(iii) 問 (2) (ii) で求めた波動関数の広がりが，問 (1) の場合に比べて，どう変化する

かを，理由と合わせて 100 字程度で述べよ。 

 



 

［ ６ ］ 均質等方弾性体でできたまっすぐな円筒管の内部に完全流体が満たされている。管内

の流体に圧力を加えたときの管の変形を考える。円筒管はじゅうぶんに長く，この管は平面ひずみ

状態にあると考えてよい。内外に圧力がかかっていない状態における，円筒管の内側および外側の

半径をそれぞれ 𝑎 と 𝑏（𝑎 < 𝑏），弾性定数を𝜆，𝜇として，以下の問いに答えよ。なお，物体力は

無視できるものとする。 

 

(1) 管に直交する平面内に 𝑥 − 𝑦 座標系をとる。この座標系における応力の平衡方程式を導け。 

 

(2) 管に直交する平面内に，管の中心軸との交点を原点とする２次元極座標系（動径成分 𝑟， 

接線成分 𝜃）をとる。この座標系における変位 𝑢𝑖 とひずみ 𝑒𝑖𝑗  の関係は ①式，ひずみと 

応力 𝜎𝑖𝑗 の関係は ②式で表すことができる。 

 

{
 
 
 

 
 
 𝑒𝑟𝑟 =

𝜕𝑢𝑟
𝜕𝑟

       

𝑒𝜃𝜃 =
1

𝑟

𝜕𝑢𝜃
𝜕𝜃

+
𝑢𝑟
𝑟
    

 𝑒𝑟𝜃 =
1

2
(
1

𝑟

𝜕𝑢𝑟
𝜕𝜃

+
𝜕𝑢𝜃
𝜕𝑟

−
𝑢𝜃
𝑟
)

 

 

{
 
 

 
 𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝑒𝑘𝑘 + 2𝜇𝑒𝑖𝑗     

 𝑒
𝑖𝑗
=

−𝜆𝛿𝑖𝑗
2𝜇(3𝜆 + 2𝜇)

𝜎𝑘𝑘 +
1

2𝜇
𝜎𝑖𝑗

 

 

②式では総和規約を用いており，𝑖, 𝑗, 𝑘 はそれぞれ 𝑟  または 𝜃で，𝛿𝑖𝑗はクロネッカーの

デルタである。 

 

このとき，応力の平衡方程式は ③式となる。 
 

{
 
 

 
   
𝜕𝜎𝑟𝑟
𝜕𝑟

+
1

𝑟

𝜕𝜎𝑟𝜃
𝜕𝜃

+
𝜎𝑟𝑟 − 𝜎𝜃𝜃

𝑟
= 0

  
𝜕𝜎𝑟𝜃
𝜕𝑟

+
1

𝑟

𝜕𝜎𝜃𝜃
𝜕𝜃

+
2𝜎𝑟𝜃
𝑟

= 0  

 

 
これらの関係を用いて，以下の (i) から (iv) の問いに答えよ。 

 

 

 

［ ６ ］は次ページに続く 

①  

②  

③  



 

(i) 円筒管の応力成分 𝜎𝑟𝑟 と 𝜎𝜃𝜃 の関係式が，𝜎𝑟𝜃 を使わずに表せることを示せ。 

 

(ii) 𝜎𝑟𝑟 と 𝜎𝜃𝜃 が ④式のような 𝑟 の関数で表せるとき，(i) で示した関係式を満たすこ

とを確かめよ。  
 

{
 
 

 
 𝜎𝑟𝑟 = 𝐴−

𝐵

𝑟2

𝜎𝜃𝜃 = 𝐴+
𝐵

𝑟2

 

 

ここで，𝐴 および 𝐵 は定数である。 

 

(iii) 管内の流体の圧力を 𝑃（正で一定値），管の外側にかかる圧力を 0としたとき，④式

の定数 𝐴 と 𝐵 を 𝑎，𝑏 および 𝑃 を用いて示せ。 

 

(iv) 𝑏 = 2𝑎，𝜆 = 𝜇 として，(iii) の状態にある円筒管外周の長さの，圧力がかかってい

ないときの長さからの変化量を 𝑎，𝑃 および 𝜇 を用いて表せ。 

 

④  



[ ７ ］ 次の問いに答えよ。 

 

(1)  3 次元直交直線座標系におけるベクトル場 𝐀𝐀 = (𝑥𝑥 + 12𝑦𝑦 + 5𝑧𝑧, 𝑥𝑥 − 2𝑦𝑦, 3𝑦𝑦 + 5𝑧𝑧) につい

て，以下の問いに答えよ。 

(i) div 𝐀𝐀 を求めよ。 

(ii) 面積分      を求めよ。ただし，𝑆𝑆 は楕円体 4𝑥𝑥2 + 9𝑦𝑦2 + 𝑧𝑧2 = 9 によって

定まる閉曲面とする。 

 

(2)  以下の問いに答えよ。 

(i) テイラー展開を用いて，オイラーの公式 𝑒𝑒𝑖𝑖𝑖𝑖 = cos𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃 が成り立つことを

証明せよ。ただし，𝑖𝑖 は虚数単位とする。 

(ii) オイラーの公式を用いて，以下の関係式を導け。 

(a)      cos(𝜃𝜃1 + 𝜃𝜃2) = cos𝜃𝜃1 cos𝜃𝜃2 − sin𝜃𝜃1 sin𝜃𝜃2 

(b)       

 

(3) 偏微分方程式            に関して，以下の問いに答えよ。ただし，𝑘𝑘 は
正の実定数とする。 

(i) 変数分離法を用いて 𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝐹𝐹(𝑥𝑥)𝐺𝐺(𝑦𝑦) と置く。𝑢𝑢(0,𝑦𝑦) = 0 かつ 𝑢𝑢(𝐿𝐿,𝑦𝑦) = 0 

の条件を満たす解を求めよ。ただし，𝐿𝐿 は正の実定数とする。必要に応じて任意

定数を定義して用いてよい。 

(ii) 問 (i)で与えた条件に加えて，𝑢𝑢(𝑥𝑥, 0) = 0 かつ             の条件

を満たす解を求めよ。 

 

(4)  𝑛𝑛 次の実正方行列 𝐒𝐒 = �𝑆𝑆𝑖𝑖𝑖𝑖� が，行列 𝐀𝐀 = �𝑎𝑎𝑖𝑖𝑖𝑖� (𝑖𝑖, 𝑗𝑗 = 1, 2,⋯ , 𝑛𝑛) とその転置行列 𝐀𝐀T 

によって，𝐒𝐒′ = 𝐀𝐀𝐀𝐀𝐀𝐀T と変換されるとする。この時，以下の問いに答えよ。ただし，𝐀𝐀 

は直交行列であり，𝐈𝐈 を単位行列として，𝐀𝐀T𝐀𝐀 = 𝐈𝐈 が成り立つ。 

(i) 𝐒𝐒′ の成分を 𝑎𝑎𝑖𝑖𝑖𝑖  と 𝑆𝑆𝑖𝑖𝑖𝑖 を用いて表せ。 

(ii) 𝐒𝐒 が対称行列のとき，𝐒𝐒′ も対称行列となることを示せ。 

(iii) 𝐒𝐒 の対角成分の和    が，変換後の 𝐒𝐒′ のそれと等しいことを示せ。 

� 𝐀𝐀 ∙ 𝑑𝑑𝐒𝐒
𝑆𝑆

 

𝑑𝑑
𝑑𝑑𝑑𝑑

cos𝜃𝜃 = − sin𝜃𝜃 

𝜕𝜕2𝑢𝑢(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑦𝑦2

= 𝑘𝑘
𝜕𝜕2𝑢𝑢(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝑥𝑥2

 

𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕 �

𝑦𝑦=0
= sin �

𝜋𝜋𝜋𝜋
𝐿𝐿
� 

�𝑆𝑆𝑖𝑖𝑖𝑖

𝑛𝑛
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